Implication of ¹⁹⁵Pt Chemical Shift Anisotropy Relaxation in N.M.R. Studies of Platinum Complexes

By JEAN-YVES LALLEMAND,* JOSETTE SOULIÉ, and JEAN-CLAUDE CHOTTARD

(Laboratoire de Chimie de l'Ecole Normale Supérieure, associé au C N R S, 24, rue Lhomond 75231 Paris Cédex 05, France)

Summary A dominant chemical shift anisotropy relaxation mechanism can account, at high magnetic fields, for the disappearance of some of the $^{195}\mathrm{Pt}{-}^{1}\mathrm{H}$ and $^{195}\mathrm{Pt}{-}^{13}\mathrm{C}$ coupling constants and for the line broadening observed in the $^{195}\mathrm{Pt}$ n m r spectra of $\mathrm{Pt^{II}}$ complexes

We have observed that in many instances, excluding ligand

exchange, the ¹H or ¹³C n m r spectra of platinum complexes display unexpected features such as broadening of the doublets arising from coupling with ¹⁹⁵Pt, or disappearance of some small splittings when the spectra are run at high magnetic fields Accordingly, although ¹⁹⁵Pt-¹H couplings have been reported at 60 MHz for mono- and bisnucleoside and nucleotide-Pt^{II} complexes,¹ studies at

J.C.S. CHEM. COMM., 1980

100 MHz of similar complexes often do not clearly show such splitting.² Furthermore, for several dinucleoside monophosphate Pt^{II} complexes we have not been able to detect any ¹⁹⁵Pt-¹H coupling in spectra recorded at 250 MHz.³

We have also made some surprising observations when studying various Pt complexes by ¹⁹⁵Pt n.m.r.⁴ spectroscopy. For example, the ¹⁹⁵Pt n.m.r. spectra of compounds (1) and (2) (Figure 1) exhibit considerable line width differences, ca. 2 Hz and ca. 15 Hz, when studied at 19.35 MHz, in the absence of any ligand exchange.

> 58.7 kG (Table). Buⁿa (1)(2) mechanism.8 FIGURE 1 3750 Hz (a) (b) (c)

FIGURE 2. ¹⁹⁵Pt spectra of compound (2) at 18·79 kG (a), 21·14 kG (b), and 58·72 kG (c). Same scale in Hz cm⁻¹.

† The ¹H and ³¹P n.m.r. spectra of the same sample showed sharp signals indicating that the linewidths observed in the ¹⁹⁵Pt n.m.r. spectrum do not result from inhomogeneities of the applied field, and that the extreme narrowing condition ($\omega \tau_e \ll 1$) is satisfied in all cases.

This led us to think that chemical shift anisotropy (C.S.A.) relaxation might be efficient in the case of the ¹⁹⁵Pt nucleus. This relaxation process is known to be strongly dependent upon the observing magnetic field B_{0} ,⁵ and has been reported to be significant in the case of heavy metal ions such as ²⁰⁷Pb.⁶ Complex (2) was studied as a model compound. Increasing the magnetic field, from 18.8 to 58.7 kG, drastically modifies the ¹⁹⁵Pt n.m r. spectrum corresponding to a decrease of the spin-spin relaxation times T_2 . The two external lines of the multiplet, due to Pt-Pt coupling $(J \simeq 190 \text{ Hz})$,^{4,7} which are clearly visible at 18.8 and 21.1 kG, have almost disappeared at 58.7 kG. 195 Pt T_1 's are also very sensitive to the influence of the magnetic field as indicated by the measurements made at 21.1 and

Thus, the enhancement of the relaxation rate observed upon magnetic field increase can only be accounted for by a dominant chemical shift anisotropy (C.S.A.) relaxation

The contribution of CSA to relaxation is given by equations (1) and (2) where $\Delta \sigma$ is an anisotropy term and $\tau_{\rm c}$ the correlation time (in the case of molecules with cylindrical

$$T_{1}^{-1} (C S A) = 2/15 \gamma^2 B_0^2 \Delta \sigma^2 \tau_c$$
⁽¹⁾

$$T_{2}^{-1} (C S A) = 7/45 \gamma^{2} B_{0}^{2} \Delta \sigma^{2} \tau_{c}$$
⁽²⁾

TABLE $^{195}\mathrm{Pt}~T_1$ values in ms, for complex (2), measured at 21 14 kG (19 35 MHz) and 58 72 kG (53 68 MHz) by the $180^\circ \tau$ -90° method, 200 mg of (2) dissolved in 1.5 ml of CDCl₃ In all cases spectra were recorded at 27 °C with proton noise decoupling

Complex (2)	2 1 1 kG	58 72 kG
T ₁ (¹⁹⁵ Pt) T ₁ (³¹ P) Δν 3 (¹⁹⁵ Pt) ^c	ca 100 ms 2300 ms ^b 11 Hz	ca 10 5 ms ^a 1700 ms 40 Hz
calculated T_2^{a}	29 ms	7 9 ms

^a \pm 2 ms owing to timing problems in the pulse sequence generator at very short τ ^b T_1 measured on the central line of the ³¹P spectrum corresponding to the 'isotopomer' containing no ¹⁸⁶Pt isotope (J D Kennedy, I J Colquhoun, W McFarlane, and R L Puddephatt, J Organometal Chem, 1979, **172** 479) The Inewidth at half-height of the main line observed by ³¹P n m r spectroscopy is 3 Hz ^o Recording of the ¹H n m r spectrum of the same sample tube under the same conditions ensured that $\Delta v_{\frac{1}{2}}$ (¹⁹⁵Pt) was not influenced by B_0 homogeneity ${}^{d}T_2 =$ $1/\pi\Delta v_{1}$

symetry $\Delta \sigma = \sigma_{\parallel} - \sigma_{\perp}$) At high magnetic fields the T_1/T_2 ratio takes the expected value of 1.2 (Table) In general τ_c is expected to be very anisotropic and to vary with the molecular weight of the compound, the viscosity, and the temperature[†] of the medium and a more complicated formalism has to be used For compound (2) a simple calculation using equation (1) gives $\Delta \sigma \simeq 900$ ppm assuming $au_{
m c} = 10^{-10}\,{
m s}$ It must be noted that much smaller values of $\Delta\sigma$ may be encountered in the case of hexacoordinated platinum complexes which are less anisotropic and for which other relaxation mechanisms may be dominant ⁹

The enhancement of relaxation rate due to CSA in square planar platinum(II) complexes may be so large that ¹⁹⁵Pt appears to lose its magnetic character (as some quadrupole nuclei) This leads to the disappearance of coupling constants with nuclei such as $^1\mathrm{H}$ or $^{13}\mathrm{C}$ and accounts for the absence of ¹⁹⁵Pt-¹H splitting when studying dinucleoside monophosphate-Pt^{II} complexes such as cis-[Pt(NH₃)₂{guanylyl(3'-5')guanosine}]⁺, cis-[Pt(NH₃)₂- $\{100 \text{ sylyl}(3'-5')100 \text{ sine }\}$, and $cis-[Pt(NH_3)_2 \{100 \text{ adenylyl}(3'-5')-100 \text{ sine }\}$ adenosine }]+ 2,3,10

We thank Dr Brevard (Bruker SADIS, Wissembourg, France) for measurements on 195Pt at 587 and 18.79 kG

(Received, 31st December 1979, Com 1352)

 \pm We have observed that in several cases 195 Pt-1H coupling constants may be restored at higher temperature, owing to an acceleration of the molecular motions leading to shorter τ_c

¹ Pi-Chang Kong and T Theophanides, Inorg Chem, 1974, 13, 1167, 1981, Bioinorg Chem, 1975, 5, 51 ² G Y H Chu and R S Tobias, J Am Chem Soc, 1976 98 2641 G Y H Chu, S Mansy, R E Duncan, and R S Tobias, ibid, 1978, 100, 593, R E Cramer and P D Dahlstrom, ibid, 1979, 101, 3679, G V Fazakerley and K R Koch, Inorg Chim Acta, 1979, **36**, 13

⁵ J C Chottard, J P Gırault, G Chottard, J Y Lallemand, and D Mansuy, Nouv J Chim, 1979, 2, 551
⁴ J Souhé, J Y Lallemand, and R C Rao, Org Magn Reson, 1979, 12, 67
⁵ G C Levy, D M White, and F A L Anet, J Magn Reson, 1972, 6, 453
⁶ R M Hawk and R R Sharp, J Chem Phys, 1974, 60, 1522
⁷ N M Boag, J Browning, C Crocker, P L Goggin, R J Goodfellow, M Murray, and J L Spencer, J Chem Res, 1978, (S) 228, 10 (2010) (M) 2962

⁸D Shaw, 'Fourier Transform NMR Spectroscopy,' Elsevier, Amsterdam, 1976 p 311

⁹ J Pesek and W R Mason, *J Magn Reson*, 1977, **25**, 519 ¹⁰ J C Chottard, J P Girault, G Chottard, J Y Lallemand, and D Mansuy, submitted for publication